Rabu, 26 Juni 2013

graves disease


Graves disease, named after Robert J. Graves, MD,circa 1830s, is an autoimmune disease characterized by hyperthyroidism due to circulating autoantibodies. Thyroid-stimulating immunoglobulins (TSIs) bind to and activate thyrotropin receptors, causing the thyroid gland to grow and the thyroid follicles to increase synthesis of thyroid hormone. Graves disease, along with Hashimoto thyroiditis, is classified as an autoimmune thyroid disorder.
In some patients, Graves disease represents a part of more extensive autoimmune processes leading to dysfunction of multiple organs (eg, polyglandular autoimmune syndromes). Graves disease is associated with pernicious anemia, vitiligo, diabetes mellitus type 1, autoimmune adrenal insufficiency, systemic sclerosis, myasthenia gravis, Sjögren syndrome, rheumatoid arthritis, and systemic lupus erythematosus.
Graves ophthalmopathy is shown below.
Graves disease. Varying degrees of manifestations of Graves ophthalmopathy.
Recent studies
Boelaert et al investigated the prevalences of and relative risks for coexisting autoimmune diseases in patients with Graves disease (2791 patients) or Hashimoto thyroiditis (495 patients). The authors found coexisting disorders in 9.7% of patients with Graves disease and in 14.3% of those with Hashimoto thyroiditis, with rheumatoid arthritis being the most common of these (prevalence = 3.15% and 4.24% in Graves disease and Hashimoto thyroiditis, respectively). Relative risks of greater than 10 were found for pernicious anemia, systemic lupus erythematosus, Addison disease, celiac disease, and vitiligo. The authors also reported a tendency for parents of patients with Graves disease or Hashimoto thyroiditis to have a history of hyperthyroidism or hypothyroidism, respectively



Hyperthyroidism, thyroid storm, and Graves disease are conditions of excess thyroid hormone. The elevated level of thyroid hormones can result in clinical manifestations ranging from mild to severely toxic with resultant morbidity and mortality for affected patients.

Pathophysiology

In Graves disease, B and T lymphocyte-mediated autoimmunity are known to be directed at 4 well-known thyroid antigens: thyroglobulin, thyroid peroxidase, sodium-iodide symporter, and the thyrotropin receptor. However, the thyrotropin receptor itself is the primary autoantigen of Graves disease and is responsible for the manifestation of hyperthyroidism. In this disease, the antibody and cell-mediated thyroid antigen-specific immune responses are well defined. Direct proof of an autoimmune disorder that is mediated by autoantibodies is the development of hyperthyroidism in healthy subjects by transferring thyrotropin receptor antibodies in serum from patients with Graves disease and the passive transfer of thyrotropin receptor antibodies to the fetus in pregnant women.
The thyroid gland is under continuous stimulation by circulating autoantibodies against the thyrotropin receptor, and pituitary thyrotropin secretion is suppressed because of the increased production of thyroid hormones. The stimulating activity of thyrotropin receptor antibodies is found mostly in the immunoglobulin G1 subclass. These thyroid-stimulating antibodies cause release of thyroid hormone and thyroglobulin that is mediated by 3,'5'-cyclic adenosine monophosphate (cyclic AMP), and they also stimulate iodine uptake, protein synthesis, and thyroid gland growth.
The anti-sodium-iodide symporter, antithyroglobulin, and antithyroid peroxidase antibodies appear to have little role in the etiology of hyperthyroidism in Graves disease. However, they are markers of autoimmune disease against the thyroid. Intrathyroidal lymphocytic infiltration is the initial histologic abnormality in persons with autoimmune thyroid disease and can be correlated with the titer of thyroid antibodies. Besides being the source of autoantigens, the thyroid cells express molecules that mediate T cell adhesion and complement regulation (Fas and cytokines) that participate and interact with the immune system. In these patients, the proportion of CD4 lymphocytes is lower in the thyroid than in the peripheral blood. The increased Fas expression in intrathyroidal CD4 T lymphocytes may be the cause of CD4 lymphocyte reduction in these individuals.
Several autoimmune thyroid disease susceptibility genes have been identified: CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22. Some of these susceptibility genes are specific to either Graves disease or Hashimoto thyroiditis, while others confer susceptibility to both conditions. The genetic predisposition to thyroid autoimmunity may interact with environmental factors or events to precipitate the onset of Graves disease.
Two new susceptibility loci were found: the RNASET2-FGFR1OP-CCR6 region at 6q27 and an intergenic region at 4p14. Moreover, strong associations of thyroid-stimulating hormone receptor and major histocompatibility complex class II variants with persistently thyroid stimulating hormone receptor autoantibodies (TRAb)-positive Graves disease were found.
Graves disease patients a have higher rate of peripheral blood mononuclear cell conversion into CD34+ fibrocytes compared with healthy controls. These cells may contribute to the pathophysiology of ophthalmopathy by accumulating in orbital tissues and producing inflammatory cytokines, including TNF-alpha and IL-6. In a genome-wide association study of more than 1500 Graves disease patients and 1500 controls, 6 susceptibility loci were found to be related to Graves disease (major histocompatibility complex, TSH receptor, CTLA4, FCRL3, RNASET2-FGFR1OP-CCR6 region at 6q27, and an intergenic region at 4p14.
Pathophysiologic mechanisms are shown in the image below.


Pathophysiologic mechanisms of Graves disease relating thyroid-stimulating immunoglobulins to hyperthyroidism and ophthalmopathy. T4 is levothyroxine. T3 is triiodothyronine.

Epidemiology

Frequency

United States

Graves disease is the most common cause of hyperthyroidism in the United States. A study conducted in Olmstead County, Minnesota estimated the incidence to be approximately 30 cases per 100,000 persons per year. The prevalence of maternal thyrotoxicosis is approximately 1 case per 500 persons, with maternal Graves disease being the most common etiology. Commonly, patients have a family history involving a wide spectrum of autoimmune thyroid diseases, such as Graves disease, Hashimoto thyroiditis, or postpartum thyroiditis, among others.

International

Among the causes of spontaneous thyrotoxicosis, Graves disease is the most common. Graves disease represents 60-90% of all causes of thyrotoxicosis in different regions of the world. In the Wickham Study in the United Kingdom, the incidence was reported to be 100-200 cases per 100,000 population per year. The incidence in women in the UK has been reported to be 80 cases 100,000 per year.

Mortality/Morbidity

If left untreated, Graves disease can cause severe thyrotoxicosis. A life-threatening thyrotoxic crisis (ie, thyroid storm) can occur. Long-standing severe thyrotoxicosis leads to severe weight loss with catabolism of bone and muscle. Cardiac complications and psychocognitive complications can cause significant morbidity. Graves disease is also associated with ophthalmopathy, dermopathy, and acropachy.
  • Thyroid storm is an exaggerated state of thyrotoxicosis. It occurs in patients who have unrecognized or inadequately treated thyrotoxicosis and a superimposed precipitating event such as thyroid surgery, nonthyroidal surgery, infection, or trauma. When thyroid storm was first described, the acute mortality rate was nearly 100%. In current practice, with aggressive therapy and early recognition of the syndrome, the mortality rate is approximately 20%.
  • Long-term excess of thyroid hormone can lead to osteoporosis in men and women. The effect can be particularly devastating in women, in whom the disease may compound the bone loss secondary to chronic anovulation or menopause. Bone loss is accelerated in patients with hyperthyroidism. The increase in bone loss can be demonstrated by increased urinary pyridinoline cross-link excretion. Serum calcium and phosphate, plasma FGF-23 were significantly higher in the patients with Graves disease than in healthy control subjects, suggesting that FGF-23 is physiologically related to serum phosphate homeostasis in untreated Graves disease.
  • Hyperthyroidism increases muscular energy expenditure and muscle protein breakdown. These abnormalities may explain the sarcopenia and myopathy observed in patients with hyperthyroid Graves disease.
  • Cardiac hypertrophy has been reported in thyrotoxicosis of different etiologies. Rhythm disturbances such as extrasystolic arrhythmia, atrial fibrillation, and flutter are common. Cardiomyopathy and congestive heart failure can occur.
  • Psychiatric manifestations such as mood and anxiety disorders are common. Subjective cognitive dysfunction is often reported by Graves disease patients and may be due to affective and somatic manifestations of thyrotoxicosis, which remit after treatment of Graves thyrotoxicosis.
  • Nonpitting edema is the most prevalent form of dermopathy (about 40%) and are primarily in the pretibial area. The nearly all (>95%) patients with dermopathy had ophthalmopathy. Advanced forms of dermopathy are elephantiasis or thyroid acropachy. Severe acropachy can be disabling and can lead to total loss of hand function.
  • Progression of ophthalmopathy can lead to compromised vision and blindness. Visual loss due to corneal lesions or optic nerve compression can be seen in severe Graves ophthalmopathy.
  • Maternal Graves disease can lead to neonatal hyperthyroidism by transplacental transfer of thyroid-stimulating antibodies. Approximately 1-5% of children of mothers with Graves disease (usually with high TSI titer) are affected. Usually, the TSI titer falls during pregnancy.
  • Elderly individuals may develop apathetic hyperthyroidism, and the only presenting features may be unexplained weight loss or cardiac symptoms such as atrial fibrillation and congestive heart failure.

Race

  • In whites, autoimmune thyroid diseases are, based on linkage analysis, linked with the following loci: AITD1, CTLA4, GD1, GD2, GD3, HT1, and HT2. Different loci have been reported to be linked with autoimmune thyroid diseases in persons of other races.
  • Susceptibility is influenced by genes in the human leukocyte antigen (HLA) region on chromosome 6 and in CTLA4 on band 2q33. Association with specific HLA haplotypes has been observed and is found to vary with ethnicity.

Sex

  • As with most autoimmune diseases, susceptibility is increased in females. Hyperthyroidism due to Graves disease has a female-to-male ratio of 7-8:1.
  • The female-to-male ratio for pretibial myxedema is 3.5:1. Only 7% of patients with localized myxedema have thyroid acropachy.
  • Unlike the other manifestations of Graves disease, the female-to-male ratio for thyroid acropachy is 1:1.

Age

  • Typically, Graves disease is a disease of young women, but it may occur in persons of any age.
  • The typical age range is 20-40 years.
  • Most affected women are aged 30-60 years


Hyperthyroidism, Thyroid Storm

Hyperthyroidism
Hyperthyroidism presents as a constellation of symptoms due to elevated levels of circulating thyroid hormones. Because of the many actions of thyroid hormone on various organ systems in the body, the spectrum of clinical signs produced by the condition is broad. The presenting symptoms can be subtle and nonspecific, making hyperthyroidism difficult to diagnose in its early stages without the aid of laboratory data.
The term hyperthyroidism refers to inappropriately elevated thyroid function. Though often used interchangeably, the term thyrotoxicosis, which is an excessive amount of circulating thyroid hormone, is not synonymous with hyperthyroidism. Increased levels of hormone can occur despite normal thyroid function, such as in instances of inappropriate exogenous thyroid hormone or excessive release of stored hormone from an inflamed thyroid gland.
Graves disease
Graves disease (diffuse toxic goiter), the most common form of overt hyperthyroidism, is an autoimmune condition in which autoantibodies are directed against the thyroid-stimulating hormone (TSH) receptor. As a result, the thyroid gland is inappropriately stimulated with ensuing gland enlargement and increase of thyroid hormone production. Risk factors for Graves disease include family history of hyperthyroidism or various other autoimmune disorders, high iodine intake, stress, use of sex steroids, and smoking. The disease is classically characterized by the triad of goiter, exophthalmos, and pretibial myxedema.
Thyroid storm
Thyroid storm is a rare and potentially fatal complication of hyperthyroidism. It typically occurs in patients with untreated or partially treated thyrotoxicosis who experience a precipitating event such as surgery, infection, or trauma. Thyroid storm must be recognized and treated on clinical grounds alone, as laboratory confirmation often cannot be obtained in a timely manner. Patients typically appear markedly hypermetabolic with high fevers, tachycardia, nausea and vomiting, tremulousness, agitation, and psychosis. Late in the progression of disease, patients may become stuporous or comatose with hypotension.

Pathophysiology

In healthy patients, the hypothalamus produces thyrotropin-releasing hormone (TRH), which stimulates the anterior pituitary gland to secrete thyroid-stimulating hormone (TSH); this in turn triggers the thyroid gland to release thyroid hormone.
Thyroid hormone concentration is regulated by negative feedback by circulating free hormone primarily on the anterior pituitary gland and to a lesser extent on the hypothalamus. The secretion of TRH is also partially regulated by higher cortical centers.
The thyroid gland produces the prohormone thyroxine (T4), which is deiodinated primarily by the liver and kidneys to its active form, triiodothyronine (T3). The thyroid gland also produces a small amount of T3 directly. T4 and T3 exist in 2 forms: a free, unbound portion that is biologically active and a portion that is protein bound to thyroid-binding globulin (TBG). Despite consisting of less than 0.5% of total circulating hormone, free or unbound T4 and T3 levels best correlate with the patient's clinical status.

Epidemiology

Frequency

United States

The overall incidence of hyperthyroidism is estimated between 0.05% and 1.3%, with the majority consisting of subclinical disease. A population-based study in the United Kingdom and Ireland found an incidence of 0.9 cases per 100,000 children younger than 15 years, showing that the disease incidence increases with age.[1] The prevalence of hyperthyroidism is approximately 5-10 times less than hypothyroidism.
Thyroid storm is a rare disorder. Approximately 1-2% of patients with hyperthyroidism progress to thyroid storm.

Mortality/Morbidity

  • Thyroid storm, if unrecognized and untreated, is often fatal.
  • Adult mortality rate from thyroid storm is approximately 10-20%, but it has been reported to be as high as 75% in hospitalized populations. Underlying precipitating illness may contribute to high mortality.

Race

  • White and Hispanic populations in the United States have a slightly higher prevalence of hyperthyroidism in comparison with black populations.

Sex

  • A slight predominance of hyperthyroidism exists among females.

Age

  • Thyroid storm may occur at any age but is most common in those in their third through sixth decades of life.
  • Graves disease predominantly affects those aged 20-40 years.
  • The prevalence of toxic multinodular goiter increases with age and becomes the primary cause of hyperthyroidism in elderly persons. 

http://emedicine.medscape.com/article/120619-overview#a0199
http://emedicine.medscape.com/article/767130-overview#showall

Sabtu, 22 Juni 2013

Mengenal Beberapa Parameter hasil Pemeriksaan Medis Bag.II (Pemeriksaan Darah Lengkap)


Pemeriksaan Darah Lengkap merupakan pemeriksaan laboratorium yang sering dilakukan untuk membantu menegakkan diagnosis. Pemeriksaan tersebut biasanya dilakukan pada berbagai kasus demam, infeksi, inflamasi, dan anemia. Interpretasi atau analisa dari hasil pemeriksaan darah lengkap sebetulnya dilakukan oleh dokter. Namun karena seringnya pemeriksaan tersebut, tidak ada salahnya kita mengetahui sedikit bagaimana membaca hasilnya.

Pemeriksaan darah lengkap terdiri dari :

  1. Leukosit
  2. Eritrosit
  3. Hemoglobin
  4. Hematokrit
  5. Trombosit
  6. Hitung jenis leukosit
  7. Laju endap darah
Pada kertas hasil pemeriksaan biasanya terdiri dari :
  1. Identitas lengkap
  2. Nama dokter
  3. Nama pemeriksaan
  4. Hasil
  5. Nilai rujukan atau nilai normal
  6. Satuan
  7. Keterangan
  8. Saran dari petugas laboratorium (bila ada)
Nilai rujukan pada setiap laboratorium dapat berbeda tergantung reagent dan alat yang dipergunakan.
Untuk membacanya, anda perlu melihat satu per satu jenis pemeriksaan, membandingkan hasil pemeriksaan dengan nilai rujukan.

Leukosit dan Hitung Jenis Leukosit
Leukosit atau sel darah putih adalah komponen sel darah yang berperan dalam sistem kekebalan tubuh untuk melawan berbagai infeksi. Apabila jumlah leukosit melebihi nilai normal disebut leukositosis. Leukositosis dapat disebabkan infeksi, inflamasi, keganasan dan lain-lain. Sedangkan apabila jumlah leukosit lebih rendah dari nilai normal disebut leukopenia. Leukopenia juga dapat disebabkan oleh infeksi, inflamasi, dan keganasan.

Eritrosit
Eritrosit atau sel darah merah yang berfungsi membawa oksigen ke seluruh tubuh. Di dalam sel darah merah terdapat protein yang berfungsi mengikat oksigen, yaitu haemoglobin. Apabila jumlah eritrosit di bawah nilai normal ada kemungkinan terdapat anemia. Apabila eritrosit lebih dari normal, ada kemungkinan polisitemia. Namun untuk menentukan anemia atau polisitemia perlu melihat nilai hemoglobin.

Termasuk juga dalam hal ini adalah perhitungan Indeks Eritrosit rata-rata yaitu perhitungan yang menyatakan besarnya volume eritrosit dan konsentrasi hemoglobin dalam tiap sel. Penggolongan anemia berdasarkan Indeks Eritrosit paling bermanfaat yaitu anemia mikrositik, normositik dan makrositik karena lebih mengarah pada sifat defek primernya dan menunjukkan kelainan yang mendasari sebelum terjadi anemia yang jelas.

  •  M C V (Mean Cell Volume)
    Merupakan perbandingan antara Hematocrite dengan Jumlah eritrosit
    Nilai Normal : 80 – 100 fl (dewasa)
    76 – 86 fl ( anak < 1 th)
    mikrositosis < 80 – 100 fl < makrositosis
  • M C H (Mean Cell Haemoglobine)
    Mengukur banyaknya Hb yang terdapat dalam satu sel darah merah. Ditentukan dengan membagi jumlah Hb dalam 1000 ml darah dengan jumlah eritrosit Per mm3 darah à pikogram
    Nilai normal : 27 – 32 pg (dewasa)
    23 – 31 pg ( anak )
    Jika nilai kurang dari normal : hipokrom
  • M C H C ( Mean Cell Hb Concentrate )
    Merupakan perbandingan Kadar rata-rata Hb dengan volume eritrosit.
    Kadar Hb/haematocrite

  • RDW  ( Red Cell Distribution Width)
    Membantu dalam klasifikasi anemia, berhubungan dengan hapusan darah dan indeks eritrosit lainnya.
    RDW penting untuk indicator derajat anisositosis atau variasi abnormal dari ukuran RBC.
    Harga normal : 10,0 – 15,0

Hemoglobin (Haemoglobin)
Hemoglobin atau sering kita kenal Hb adalah protein di dalam sel darah merah yang berfungsi mengikat oksigen. Bila hemoglobin lebih rendah dari nilai normal maka disebut anemia. Apabila nilai hemoglobin lebih tinggi dari nilai normal maka disebut polisitemia.
Banyak kondisi yang dapat menyebabkan anemia di antaranya kekurangan/defisiensi zat besi, defisiensi asam folat, talasemia, infeksi kronik, keganasan dan lain-lain. Untuk mengetahui penyebab anemia perlu dilakukan pemeriksaan lanjutan yaitu serum iron, feritin, TIBC, gambaran darah tepi, dan elektroforesa Hb. Pemeriksaan tersebut dilakukan secara bertahap sesuai indikasi.

Hematokrit
Hematokrit adalah perbandingan volume sel darah merah terhadap volume darah secara keseluruhan. Nilai hematokrit biasanya dikaitkan dengan ada tidaknya perembesan plasma pada kasus demam berdarah dengue. Pada kasus demam berdarah dengue (DBD), apabila terdapat peningkatan hematokrit berarti terdapat rembesan plasma ke luar pembuluh darah.

Trombosit
Trombosit adalah sel darah yang berperan pada proses pembekuan atau menghentikan perdarahan. Trombositopenia adalah jumlah trombosit lebih rendah dari nilai normal. Trombositopenia dapat disebabkan infeksi virus (termasuk demam dengue atau demam berdarah dengue), keganasan, ITP, perdarahan, dan lain-lain. Sedangkan trombositosis adalah peningkatan jumlah trombosit melebihi nilai normal. Trombositosis dapat disebabkan infeksi, keganasan, reaksi dari kerusakan jaringan, dan lain-lain.

Laju Endap Darah
Laju endap darah adalah kecepatan sel darah merah (eritrosit) mengendap dalam satuan mm/jam. Laju endap darah yang tinggi biasanya dikaitkan dengan adanya infeksi akut, infeksi kronik dan inflamasi.
Mungkin tidak mudah bagi kita membaca hasil pemeriksaan darah. Hal tersebut bukanlah masalah. Mengetahui bahwa ada nilai yang tidak normal dan mengetahui istilah-istilahnya sudah lebih dari cukup. Interpretasi hasil pemeriksaan harus dilakukan oleh dokter dan menyesuaikan korelasinya dengan kondisi klinis pasien.

Contoh Nilai Normal Hasil Pemeriksaan Darah di Lab

Nilai laboratorium normal (rujukan) pada anak & Dewasa bisa berbeda tergantung pada metode dan reagent yang dipergunakan oleh laboratorium atau rumah sakit masing-masing. Berikut ini ada nilai lab normal pada anak dan dewasa menurut American Academy of Pediatrics :


Darah Rutin / Darah Lengkap
Usia Hb (g/dL) Ht (%) Eritrosit (mill/mm3) RDW MCV (fL) MCH (pg) MCHC (%) Trombosit (x 103/mm3)
0-3 hari 15.0-20.0 45-61 4.0-5.9 <18 95-115 31-37 29-37 250-450
1-2 minggu 12.5-18.5 39-57 3.6-5.5 <17 86-110 28-36 28-38 250-450
1-6 bulan 10.0-13.0 29-42 3.1-4.3 <16.5 74-96 25-35 30-36 300-700
7 bulan – 2 tahun 10.5-13.0 33-38 3.7-4.9 <16 70-84 23-30 31-37 250-600
2-5 tahun 11.5-13.0 34-39 3.9-5.0 <15 75-87 24-30 31-37 250-550
5-8 tahun 11.5-14.5 35-42 4.0-4.9 <15 77-95 25-33 31-37 250-550
13-18 tahun 12.0-15.2 36-47 4.5-5.1 <14.5 78-96 25-35 31-37 150-450
Laki-laki dewasa 13.5-16.5 41-50 4.5-5.5 <14.5 80-100 26-34 31-37 150-450
Wanita dewasa 12.0-15.0 36-44 4.0-4.9 <14.5 80-100 26-34 31-37 150-450



Sel Darah Putih dan Hitung Jenis
Usia Leukosit 
(x 103/mm3)
Seg Bat Limf Mono Eos Bas
0-3 hari 9.0-35.0 32-62 10-18 19-29 5-7 0-2 0-1
1-2 minggu 5.0-20.0 14-34 6-14 36-45 6-10 0-2 0-1
1-6 bulan 6.0-17.5 13-33 4-12 41-71 4-7 0-3 0-1
7 bulan – 2 tahun 6.0-17.0 15-35 5-11 45-76 3-6 0-3 0-1
2-5 tahun 5.5-15.5 23-45 5-11 35-65 3-6 0-3 0-1
5-8 tahun 5.0-14.5 32-54 5-11 28-48 3-6 0-3 0-1
13-18 tahun 4.5-13.0 34-64 5-11 25-45 3-6 0-3 0-1
Dewasa 4.5-11.0 35-66 5-11 24-44 3-6 0-3 0-1
Seg = neutrofil segmen
Bat = neutrofil batang
Limf = limfosit
Mono = monosit
Eos = eosinofil
Bas = basofil



Laju Endap Darah (LED) and Hitung Retikulosit
Laju endap darah, Westergren Anak 0-20 mm/jam

Pria dewasa 0-15 mm/jam

Wanita dewasa 0-20 mm/jam



Sedimentation rate, Wintrobe Anak 0-13 mm/jam

Pria dewasa 0-10 mm/jam

Wanita dewasa 0-15 mm/jam



Hitung Retikulosit Newborns (<28 hari) 2%-6%

1-6 bulan 0%-2.8%

Dewasa 0.5%-1,5%



Referensi
Tefferi A, dkk. How to interprete and pursue an abnormal complete blood cell count in adult. Mayo Clin Proc. July 2005;80(7):923-936
http://www.pediatriccareonline.org/pco/ub/view/Pediatric-Drug-Lookup/153930/0/normal_laboratory_values_for_children
http://www.ayohidupsehat.info/2011/12/mengenal-beberapa-parameter-hasil_08.html

PEMERIKSAAN INDERECT TINJA

PEMERIKSAAN INDERECT TINJA

Sample :Tinja tikus dan anjing
Metode: Pengendapan
FORMALIN ETLIER
1. TUJUAN : Untuk mengetahui adanya parasit dalam tinja
2. PRINSIP : Parasit dalam tinja akan terkonsentrasi dari lapisan endapan dan
pemusingan dengan adanya formalin eter maka parasit akan terawetkan
3.ALAT dan BAHAN : -Sample -Centrifuge - Lugul
- Tabung Reaksi -Objek glass - Mikroskop
-Batang pengaduk – Pipet - Formalin
4. CARA KERJA : a. Ambil ± 2m/2 gram tinja, masukkan kedalam tabung reaksi yang
Berisi 10 ml larutan garam isotonis, campurkan dan hancurkan massa
tinja dengan batang pengaduk sampai rata.
b. Saring dengan 2 lapis kain kasa pada corong kedalam tabung alat
pemusing.
c. Pusingkan dalam alat pemusing selama 3 menit pada 1500 rpm,
setelah pemusingan,dilihat apakah cairan supernaran sudah jernih,bila
masih keruh. Maka supernaran dituang,ditambahkan lagi 10 ml,
larutan garam isotonis, dipusing lagi sampai tercapai supernaran
yang jernih.
d. Tuangkan supernata yang jernih.
e. Tambahkan 110ml Formalin 10%
f. Aduk dengan baik, tunggu selama 5 menit
g. Tambahkan 3 ml eter
h. Sumbatlah dengan penyumbat karet,kocok hati-hati selama 36 detik
i. Buka sumbatan, pusingkan dalam centrifuge selama 3 menit 1500rpm.
Selesai pemusingan akan tampak 4 lapis dari atas kebawah, eter,debris,
Formalin,endapan
j. Bebaskan lapisan debris dari tabung dengan menyisirnya menggunakan
lidi.
k. Campur endapan denga larutan yang tersisa.
l.Dengan pipet, pindahkan 1 tetes endapan ke objek glass.
m. Tambahkan larutan pemulas pada salah satu tetesan endapan tsb.
n. Tutup dengan deck glass.
o.Beri label keterangan.
p.Amati dibawah mikroskop dengan objektif 40x atau 10x.
5. HASIL :
- Telur Hymenolepis nana
- Larva Hook worm
- Telur Hook worm type B
6.KESIMPULAN : Pada pemeriksaan tinja tikus dan anjing ditemukan parasit stadim telur
Hook worm type B, Larva Hook worm, telur Hymenopis nana.
7. PEMBAHASAN :
Pemeriksaan konsentrasi metode dengan teknik pengendapan asam eter ini merupakan pemeriksaan cepat. Khususnya untuk tinja yang kasur,campurkan antara asam keras dan eter akan membersihkan/ menjernihkan endapan, sehingga parasit baik untuk telur dan tempayak Helminthes,khususnya untuk telur schistosoma.sp.
Pemeriksaan konsentraso metode pengendapan dengan teknik pengendapan formalin eter memutuskan untuk pemeriksaan kista protozoa, telur beroperkulum dan telur schistosoma sp. Tetapi tidak dapat untuk mengkonsentrasikan bentuk trobozoit pada bahan pemeriksaan yang segar,kecuali jika dipakai bahan pemeriksaan yang telah diawetkan dengan pengawet PVA.Teknik ini merupakan teknik pilihan untuk mengkonsentrasikan bahan pemeriksaan yang diawetkan dengan formalin.Dalam teknik inipun dipakai formalin yang berguna untuk tetap mengawetkan bentuk parasit,sedangkan pemakaian eter bertujuan untuk menyingkirkan lemak dan minyak yang ada pada tinja.
Pemeriksaan indirect tinja dengan metode pengendapan ini memang lebih sulit bila dibandingkan metodepengapungan karena parasit-parasit yang mengendap memungkinkan ikut terbucing pada saat pembuangan eter, debris dan larutan yang digunakan untuk pemeriksaan baik asam maupun formalin

syndrome baby blues


Baby Blues Syndrome, atau sering juga disebut Postpartum Distress Syndrome adalah perasaan sedih dan gundah yang dialami oleh sekitar 50-80% wanita setelah melahirkan bayinya.

Penyebab Sindrom Baby Blues
Setiap penyakit, hampir dipastikan memiliki penyebabnya tersendiri. Baby blues syndrome memang belum diketahui penyebab secara pastinya, namun ada beberapa faktor yang diduga menjadi penyebabnya, antara lain:

Faktor Hormonal
Pasca persalinan selesai, hormon kortisol pada seorang ibu akan naik mendekati kadar seperti pada orang yang tengah depresi. Di saat yang bersamaan, prolaktin dan hormon laktogen yang memicu produksi air susu ibu (ASI) juga meningkat, dan sebaliknya hormon progesteron malah mengalami penurunan signifikan. Akibat dari semuanya itu ialah timbulnya kelelahan fisik sehingga memicu terjadinya depresi.

Faktor Fisik dan Faktor Psikologis
Sindrom baby blues juga bisa dipicu dari rasa lelah dan capai yang tiada tara pasca melahirkan dan juga disambung dengan kewajiban mengurus sang bayi secara intensif dan telaten.
Kondisi pada ibu yang baru melahirkan sangat lelah dan secara psikologis memerlukan perhatian dan bantuan ekstra dari suami dan juga keluarga terdekatnya.
Kalau semua hal itu tidak didapatkannya, maka kondisi psikologisnya akan down karena merasa sendirian dalam menghadapi kelelahan fisik dan psikisnya tersebut. Akhirnya, baby blues syndrome pun akan menjangkiti.

Faktor Sosial
Ibu yang baru pertama kali melahirkan tentunya akan memiliki kondisi yang berbeda dengan ketika ia masih belum memiliki bayi. Seorang ibu yang kesulitan dalam menghadapi hal baru tersebut tentu akan merasa bahwa bayinya justru menjadi penghalang kebebasannya.

Gejala-Gejala Sindrom Baby Blues
Kondisi dimana seorang ibu yang mengalami sindrom ini bisa dilihat dari timbulnya gejala-gejala seperti sangat sensitif: mudah menangis, merasa sedih, dan kesal; hilangnya nafsu makan, terjadinya penurunan berat badan atau bahkan bisa terjadi sebaliknya yakni meningkatnya nafsu makan dan terjadinya kenaikan berat badan secara berlebihan; berkurangnya energi dan motivasi sehingga sulit melakukan berbagai kegiatan, termasuk mengurusi bayinya sendiri; sulit tidur dan adanya perasaan khawatir secara berlebihan seperti khawatir akan menyakiti diri dan bayinya, dan kecemasan lainnya.

Cara Mengatasi Sindrom Baby Blues
Berikut ini merupakan beberapa hal yang bisa dilakukan untuk membantu mengatasi baby blues syndrome ini:
  • Banyak melakukan kegiatan/aktifitas yang bermanfaat seperti membaca, berbincang dengan suami, saudara, dan lainnya.
  • Meluangkan waktu untuk diri sendiri dan memanjakan keinginan sendiri untuk menghilangkan rasa stres dan lelah pasca melahirkan.
  • Banyak beristirahat. Untuk mengurusi sang bayi bisa dibantu oleh pasangan atau keluarga terdekat.
  • Banyak mengonsumsi makanan yang bergizi.
  • Menggunakan jasa pembantu/baby sitter untuk mengurangi beban pekerjaan Anda pasca melahirkan.


http://www.tipsbayi.com/apa-itu-baby-blues-syndrome.html